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INTRODUCTION

There has been a recent resurgence of interest in the multi-disciplinary field of

artificial neural networks. Artificial neural networks, originally inspired by the

computational capabilities of the human brain, refer to a variety of computing
architectures that consist of massively parallel interconnections of simple processing

elements.

Artificial neural networks (a.k.a. Neural Networks) are implemented utilizing a
variety of technologies, as shown in Fig 1. The most used implementation technique is
via computer simulations, which provide a very flexible framework from which to

evaluate a particular paradigm, and for comparing with more conventional processing

algorithms.

SPEED (INTERCONNECTS/SEC)

COMPUTER DIRECT HYBRIDS
SIMULATION VLSI/VHSIC

DIGITAL ANALOG OPTICAL
IC's VLSI

FIG 1: IMPLEMENTATIONS



However, computer simulations of neural networks, especially during training, can be

exceptionally slow, even with the use of commercially available neural network

accelerator boards. Also, once a hardware implementation of the neural network has

been established, the comparison between it and the conventional simulation of the

neural network becomes irrelevant.

Digital integrated circuit (IC) implementations offer an improvement in the

processing speed of neural networks, measured in interconnections per second, but

they are generally static architectures encompassing larger packaging requirements

than are useful in realistic applications. Therefore, the artificial neural networks that

have been implemented using digital ICs are usually limited in the number of neurons

and interconnections which can be constructed primarily due to size constraints.

Currently, there exist two promising advanced technologies for implementing neural

networks: Very Large Scale Integration (VLSI) circuits, and optical.

This final technical report describes the utilization of VLSI circuits for implementing

various neural networks, with an emphasis on analog VLSI, as opposed to digital

VLSI, implementations. The recent literature on analog VLSI implementations of

neural networks is scattered throughout a number of conference proceedings and

journals, making it difficult to gain an overview of the different analog VLSI techniques

utilized. This report is aimed at providing such an overview.

Several of the papers referenced have working versions of analog VLSI

implementations, while others have theorized the methodology required for analog

VLSI implementations. Some of the research presented incorporates a hybrid of

analog and digital VLSI techniques for implementation, utilizing the advantages of

each technology. A comparison of the different implementation techniques (e.g.,

CMOS, MOSFET, MNOS, etc.) is provided, as is the type of paradigm implemented

(e.g., backpropagation, Hopfield, bidirectional associative memories, etc.).

BACKGROUND

Computation within the human brain is currently believed to be an electrochemical

process which takes place in an analog fashion . The inputs to the brain are received
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as a continuous (ie, analog) stream of data, such as received by the auditory and

visual systems. This data is then processed by a multitude of massively

interconnected biological neurons. The human cerebral cortex is believed to contain

approximately 100 billion neurons, which are connected by approximately 100,000

billion synapses, providing some 10,000 billion interconnections per second [61].

The computational capability of the human brain does not depend on the ability of just

one neuron, but the collective computation from billions of neurons. This enormous

processing capability has provided the inspiration to a multitude of researchers to

obtain a comparable computing capability, and several researchers are currently

investigating the potential of advanced hardware implementations of artificial neural

networks.

A simplified artificial neuron model is illustrated in Fig 2, which consists of a

processing element (PE) whose output is a function of its input. The input to a

Variable

Input P
S• Output

Fig 2: A Model Neuron

processing element is the weighted sum of eithar outputs from other PEs or the

original inputs to the network. This weighted sum is then presented to the PE, which
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incorporates a nonlinear transfer function (e.g., sigmoid) to determine the output,

which is then presented to either other PEs or the network output. Therefore an
implementation of an artificial neural network must be able to compute sums and

products very efficiently.

Although artificial neural networks can be implemented using static weights, the use

of vanable weights, as illustrated in Fig 2, appears to be leading the charge in the
research community. The hardware implementation of variable weights permits the

artificial neural network to adapt or 'learn' over time. The weights are typically adapted

using an equation of the form:

new_weight = old-weight + error-correctionterm

Three different learning schemes, Hebbian, Least Mean Squares (LMS) or Delta Rule,

and Self Organizing, all have this form [6]. As stated in [29] the most important aspect
from a hardware perspective is that most learning techniques require interconnection

weights that are adjustable in small steps. The ability to adjust the weights in small

steps implies that high resolution is required for storing the weights. However, several
researchers have shown that in the evaluation phase (feedforward, no training) most

networks are very tolerant to low precision in the weights (29]. The different learning

schemes can either be accomplished off-chip or on-chip, and this decision has a large
impact on the actual circuit implementation based on existing technologies.

ADVANCED IMPLEMENTATION TECHNOLOGIES

There are two advanced technologies currently being researched for implementing

artificial neural networks: VLSI and Optical. As stated in [61] the "principle advantage

of using optics for the implementation of neural networks is the fact that one can

optically implement a three-dimensional system with relative ease". An optical
implementation (e.g., holographic) offers an advantage in the interconnections of the

neurons in that it can be done optically, as opposed to the maze of interconnects which

are required in VLSI implementations. For this reason, optics is one of the promising
technologies for implementing neural networks. For more information on optical (as
well as opto-electronic/hybrid) implementations, the reader is referred to the open

literature.
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The other promising technology for artificial neural network implementations is VLSI

circuits. VSLI circuits are essentially two-dimensional (ie, planar) devices, which

implies that a limited number of layers are available for the interconnection of

processing elements. (It should be mentioned that, according to [24], major

development in three-dimensional IC connectivity is taking place primarily in Japan.)

There are two approaches to implementations based on VLSI technology, either

Analog VLSI or Digital VLSI.

Digital VLSI is a mature technology from which to draw from for implementing

artificial neural networks. There exists a variety of design tools (e.g., Computer Aided

Design tools) which are amenable to digital VLSI circuit design, which permits circuit

designers to more easily construct complex digital circuits. Also, the artificial neuron

and the synapses can both easily be implemented in digital hardware, since each can

be expressed by simple arithmetic operations. Another adv'antage of digital

processing is the accuracy at which computations can be performed. The issue of

accuracy also has a direct impact on the resolution of the weights, as digital

implementations can have arbitrarily precise weights, which influences the training of

the artificial neural network, as well as the final output. However, one of the major

disadvantages of digital neural implementations is that too much silicon area is

consumed [671. Another disadvantage is that digital circuits require relatively high

signal to noise ratios in order to obtain accurate results [611. For more information on

digital VLSI implementations, the reader is referred to the open literature.

Analog VLSI implementations, on the other hand, utilize much less silicon area.

One of the reasons for this, is that analog computation utilizes properties of the device

physics. For example, summation in an analog circuit can be accomplished by making

use of the principles of Kirchoff's Current Law, which is based on the physical concept

of Conversation of Charge [58]. Kirchhoff's current law states that the sum of the

currents into the node is equal to the sum of the currents out of the node.Conservation

of charge essentially states that electrical charge can be neither created nor

destroyed- therefore a node, by itself, cannot store any charge. Summation,

therefore, is obtained simply by combining the currents from other neurons onto a wire.

A simplified example of an analog implementation of a model neuron [29] is shown in

Fig 3, where the weighted cornections from other neurons are summed along the
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input wire of neuron 1. The output of neuron 1 is a voltage, which is then transmitted to

other neurons through the respective connections (weights). The output voltage of

Connections from Connections to
other neurons other neurons

Input > Output

Neuron 1

Fig 3: A Simplified
Neuron Implementation

This figure extracted from Graf 129J

,euron 1 is given by the following relationship:

OutputVoltage = f ( InputCurrent)

The input current to neuron 1 is equal to the sum of the currents through the

connections from other neurons, where the individual currents are equal to the

voltage from the respective neuron times the conductance of the connection weight.

Therefore, as was previously shown, one of the basic computations to be performed by

an artificial neural network is a sum of products.

For analog computation, the basic signals used are currents and voltages. As
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previously described, the output of neuron 1 is a voltage. This voltage, which is

supplied as the input to the connections which lead from neuron 1 to other neurons, is

the same for all connections leading from neuron 1. For these reasons, analog VLSI is

highly appropriate for the massively parallel implementations of artificial neural

networks. Mead [58] provides an excellent description of how simple analog circuits

can be implemented as building blocks to obtain results which are functionally similar

to processes performed by biological systems.

Other physical properties of devices which can be useful for analog computations

are natural propagation which can be used to provide time delays, and noisy devices

which can be used to perform stochastic processing [61]. Another advantage of

analog computation is the extremely high computational rates which can be achieved

by using the physical properties of simple devices. This results in efficient utilization of

silicon, thereby providing very high densities.

Some of the disadvantages of analog computation stem from the lack of
sophisticated design tools such as the tools available for digital design. Another

disadvantage is the accuracy of the computations, or even the accuracy at which the
individual weights can be stored. The ability to retain high precision weights in an

analog implementation is currently being researched, but recent results have shown

that dynamic resolutions on the order of 11-12 bits are possible [19,80]. However, for

the reasons listed above, there are several researchers who are utilizing a hybrid

analog / digital implementation for artificial neural networks to take the advantages of

each technology, while reducing the disadvantages associated with each technology.
For further information on hybrid analog/digital implementations, refer to table 1 which

includes references pertaining to hybrid implementations. The remainder of this report

will emphasize analog VLSI implementations of artificial neural networks.

ANALOG VLSI TECHNOLOGIES/IMPLEMENTATIONS

Probably the most compelling reason to use analog VLSI for implementing artificial

neural networks is that inputs obtained from the real world are analog! There currently

exist a number of technologies which can be used to implement an analog (or hybrid

analog / digital) VLSI based artificial neural network. Listed below are the
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technologies which have appeared in the open literature:

- Generic CMOS (capacitors, FETs, etc.)

(includes subthreshold MOSFET operation)

- Floating Gate Transistors

- Charge-Coupled Devices (CCD)

- EEPROMS

- Metal Nitride Oxide Silicon (MNOS), and

- Pulse Code Modulation (includes Pulse Freq Modulation

and Pulse Width Modulation)

Generic Complementary Metal-Oxide Semiconductor (CMOS) Technology is the

principle technology used in microelectronics today. Techniques included in this

category include the use of MOS capacitors for storing weights, MOSFETs (field effect

transistors), and the use of subthreshold circuits as described in [58]. CMOS

technology acquired its name from the concept upon which it is based. The

complementary aspect is a result of the use of both p-channel and n-channel MOS

transistors. P-channel MOS transistors are transistors which utilize positive charges

(holes) as the charge carriers, while n-channel MOS transistors utilize negative

charges (electrons) as the charge carriers. For an excellent description of CMOS VLSI

technology, the reader is referred to [58]. The Generic CMOS category was the most

utilized technology among the papers researched, and included the implementations

for a variety of paradigms with the exception of the Kohonen net. Figs 4 & 5 illustrate

the references which utilize generic CMOS technology for implementing certain

paradigms / biologically inspired functions.

Fig 4 contains a wealth of information. Listed under the heading "PARADIGM" are

the artificial neural network models which have been implemented by the variety of

references included in this paper. Descriptions of the models are widely available in

the open literature. The last two entries GENERAL and UNKNOWN however need

some elaboration. The GENERAL category has been included for those hardware

implementations that have either implemented more than one paradigm, or the

authors have stated that they can implement a variety of different paradigms. The
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UNKNOWN class was added to incorporate those articles which performed a small

portion of an artificial neural network (e.g., only a synapse structure was implemented,

or only general theory was provided as to the methodology in which an architecture

could be implemented, regardless of the paradigm).

Fig 5 provides a quick reference of those articles which have implementations

which are more applications oriented (e.g., the biologically inspired work of Mead

[58]).
Floating Gate Transistors (ie, analog floating gate transistors) have been

implemented as adaptive nonvolatile weights. Floating gate transistors can vary

charge continuously, thereby the storage cell performs in an analog fashion [26]. The

dynamic range for storage devices constructed utilizing floating gate transistors is on

the order of 4-6 bits. Floating gate technology has been implemented by

[11,22,36,53,82] for mainly backprop and Hopfield type networks.

Charge-Coupled Devices (CCD) are structures that control the flow of charge

packets [76]. Therefore CCDs can be implemented to sum charge packages, as

opposed to generic CMOS processes which sum currents. Fig 6 is a schematic of the

structure of a charge-coupled device.

GATES

DIELECTRIC

OHMIC
CONTACTS

N+ N+
P SILICON

Fig 6: Schematic of the structure of a CCD
This figure extracted from Sage and Withers [76].
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The operation of the CCD is described as follows: "diffusions at the beginning and end

serve as sources and sinks for charge packets, whose movement through the device is

controlled by voltages applied to a series of gates which are separated from the silicon

by a dielectric layer' [76]. The utilization of implementations based on CCD
technology have been for Backprop networks as demonstrated by Massengill and
Mundie [54], Hopfield type networks as demonstrated by Sage and Withers [76], and

also for different types of networks, according to Agranat [1]. A CCD architecture has

also been shown to be well suited to implementing shared-weight networks (e.g.,

Neocognitron) by Chuang and Chiang [12].

EEPROM (Electronically Erasable Programmable Read Only Memory) technology

is closely associated with floating gate transistor technology. EEPROMs offer
nonvolatile storage of the synaptic weights. With EEPROMs, "the charge representing

the synaptic weight is stored on the capacitance of the electronically floating gate in

these devices" [10]. Some of the researchers currently investigating EEPROMs for
implementing artificial neural networks includes [8,10,36,44,53,76,77]. The paradigm

most often implemented is the Hopfield network, however [36] has a neural network

chip currently on the market entitled ETANN (Electronically Trainable Analog Neural
Network) which is capable of implementing various paradigms. For more information

on ETANN, refer to the attached experimental brochure on Intel's ETANN.
Metal Nitride Oxide Silicon (MNOS) Technology was pioneered at Lincoln

Laboratories. The MNOS technique permits electronic programmability, similar to

EEPROM technology. MNOS devices store analog weights as charge in a nitride layer

between the gate and the channel of an FET, causing a modulation of the gate voltage
[67]. As described in [76] "in the conventional operation of MNOS devices using p-

type silicon, the silicon surface is held either in accumulation (negative gate voltages)

or in full inversion (positive gate voltages). Accumulation occurs naturally when a
negative gate voltage is applied; inversion is typically allowed to occur rapidly by

providing a nearby n+ diffusion as a virtually unlimited source of electrons".

Examples of implementations using MNOS technology are [76,77], with the Hopfield

paradigm being the model which was constructed.

Pulse Stream Arithmetic: As described in [68] , "in a pulse-stream implementation,

a neuron functions as a switched oscillator. The level of accumulated neural activity
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controls the oscillator's firing rate". In Murray [67,68,691, a fully analog synapse has

been developed which is fully programmable, and operates on individual pulses to

perform arithmetic. In Hochet, et al, [35] have implemented a Kohonen network

utilizing Frequency Coded Pulse Streams. In addition, Danielli, et al, [15] and Moon,

et al [63]have implemented a backpropagation network based upon Pulse

Frequency/Coding Modulation.

CONCLUSION

Analog VLSI implementations of artificial neural networks is currently being

investigated by a large number of researchers throughout the US, Europe, and Japan,

as is evidenced by the large numbers of technical papers which have been published

in a variety of conference proceedings, journals, and other technical publications.

This final technical report provides an overview of the Analog VLSI technologies

which are currently being utilized/researched to implement artificial neural networks.

Tradeoffs between analog and digital computations were presented to provide a

perspective to the different approaches to computing. Shown were the relationships

between the advanced analog VLSI technologies and the paradigms implemented
(Fig 4), as well as the biologically inspired implementations as summarized in Fig 5.

Both Figs 4 & 5 provide a concise reference to those interested in hardware

implementations via analog VLSI circuits. Table 1 has been included to provide a very

brief description of the references cited in this report. Table 2 has been included to

provide a reference (which is by no means exhaustive) of different companies which

are involved in the design of artificial neural network chips.
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Company: Accotech Company: HNC
Chip Name:AK107 Chip Name: HNC-200X
Description:lntel 8051 digital microprocessor Description:2.5 billion conn/sec

with on-chip ROM coded for NN Availability: DARPA contract
Availability: Now

Company: Fujitsu Ltd. Company: Intel Corp.
Chip Name:MB4442 Chip Name:N64 (ETANN?)
Description:one neuron chip, 70,000 conn/s Description:2.5 conn per 64x64x64 with
Availability: Now in Japan 10,000 synapses

Availability: Now

Company: Hitachi Ltd. Company: Micro Devices
Chip Name:None yet Chip Name:MD1210
Description:Information encoded pulse trains Description:fuzzy logic combined with
Availability: Experimental NN in fuzzy comparator chi

Availability: Now

Company: HNC Company: Motorola Inc.
Chip Name: HNC-100X Chip Name: None yet
Description: 100 million conn/sec Description: "whole brain" chip
Availability: Army Battlefield Computer Availability: late 1990 (?)

Table 2: Neural Network Chips
The information contained in this table was

originally from an article by Colin Johnson in Al's
January/February 1990 issue.

Later revised by Bruce Shriver @ USL.
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